

Tsinghua University

清華大学

Critical Communication Radius for Sink Connectivity in Wireless Networks

Hongchao Zhou, Fei Liu, Xiaohong Guan

Tsinghua University / Xi'an Jiaotong University

Outlines

Introduction

- Asymptotic sink connectivity
- Critical communication radius for sink connectivity
- Effective communication radiuses for different link models

Wireless Sensor Networks

- Small devices with capability of sensing, processing and wireless communication
- Distributed and autonomous wireless networks with self-organization and cooperation for information acquisition
- Wide variety of applications for infrastructure safety, environmental monitoring, manufacturing and production, logistics, health care, security surveillance, target detection/localization/tracking, etc

Challenging problems and issues

- Limited node resources in terms of energy, bandwidth, processing capacity, storage, etc
- Energy consumption ∞ {processing speed²⁻⁴, sensing radius^{q=2-4}, communication radius^{q=2-4}}
- Energy constrained communication protocol
- Special issues on connectivity, time synchronization, localization, sensing coverage, task allocation, data management, etc.

Connectivity problem

- G (n, s, r) : the network in consideration
- s : disc radius
- **A**: disc area, $A = \pi s^2$
- *r* : communication radius, if $||x_i x_j|| < r$, $i \rightarrow j$ and $j \rightarrow i$
- n : the number of nodes
- **d**: $d = n\pi r^2 / A$, average number of neighbor nodes

Determine the minimal *r* to guarantee the connectivity of the network

Existing result (P. Gupta and P. R. Kumar, 1998)

Critical radius for fully connected graph (no isolated node)

The network is asymptotically ($n \rightarrow \infty$) fully connected with probability one if and only if

$$r = \sqrt{A(\log n + \gamma)} / \pi n$$

with variable $\gamma \rightarrow \infty$

Issue

- Full connection may not be necessary for some applications
- To save energy and prolong lifetime, a very small fraction isolated nodes of in a wireless sensor network with thousands of nodes could be tolerated

Introducing sink connectivity

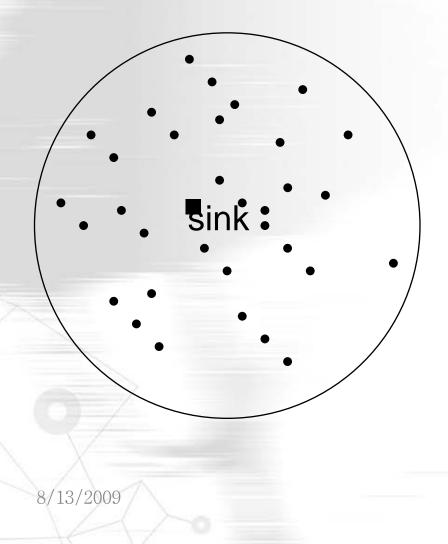
13/2009

- Assume the sink is a randomly selected node in the network
- Sink connectivity C_n is defined as the fraction of nodes in the network that are connected to the sink

Goal

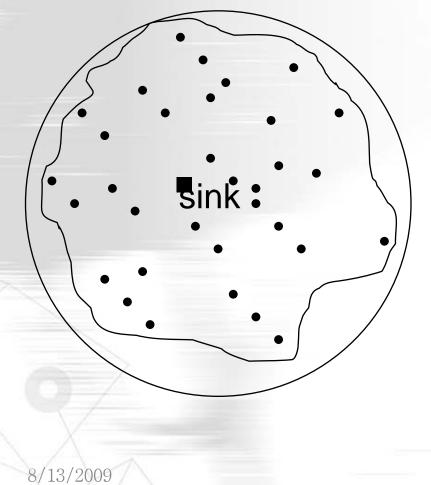
□ Find the critical communication radius to guarantee $Cn > \alpha$, where α is a constant close to 1

Connected subnet

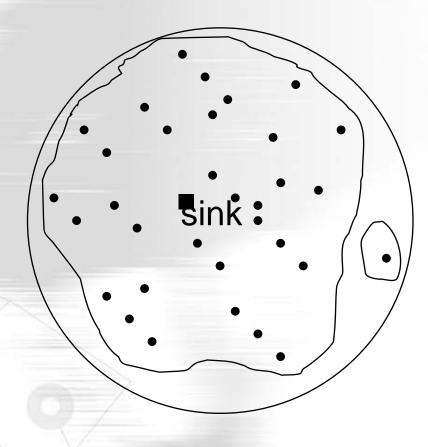


Let $L_j(n, s, r)$ be the number of nodes in the *j*th-largest connected subnet in

G(n,s,r)



Fully connected $\Leftrightarrow C_n = 1$ $\Leftrightarrow L_1(n, s, r) = n$



Partial connected

 $\Leftrightarrow C_n < 1$

$$\iff L_1(n,s,r) < n$$

The expectation of C_n

$$E(C_n) = \sum_{i} \left(\frac{L_i(n, s, r)}{n}\right)^2$$

Outlines

- Introduction
- Asymptotic sink connectivity
- Critical communication radius for sink connectivity
- Effective communication radiuses for different link models

Asymptotic sink connectivity

Based on the continuum percolation theory*, we can get the following two theorems

Theorem 1: If $r_n = \sqrt{Ad/(\pi n)}$, let $d_c = \pi \lambda_c$, then $\forall d < d_c$, $C_n \xrightarrow{P} 0$ as $n \to \infty$.

Theorem 3: If $r_n = \sqrt{Ad/(\pi n)}$, then, $C_n \xrightarrow{P} 1$ as $n \to \infty$ if and only if $d \to \infty$.

* M. Penrose, *Random Geometric Graphs*. New York: Oxford University Press, 2003.

Comparison with the existing result

Gupta's conclusion Goal

 $P_c = \mathbb{P}[C_n = 1] \rightarrow 1$ as $n \rightarrow \infty$

Critical radius:

$$r^* = \sqrt{A(\log n + \gamma)/(\pi n)}$$

where $\gamma \to \infty$

Example:

 $r^* = \sqrt{A(\log n + \log \log n)/(\pi n)}$

Current result Goal $C_n \xrightarrow{P} 1$ as $n \to \infty$

Requirement: $r = \sqrt{Ad/(\pi n)}$ where $d \to \infty$

Example:

$$r = \sqrt{A(\log \log n)/(\pi n)}$$

Average neighbor number d

$$\square \mathbf{d}: d = n\pi r^2 / A$$

□ Mapping: $G(n, s, r) \xrightarrow{\times \lambda} G(n, \lambda s, \lambda r)$

The connectivity is unchanged; $d = n\pi r^2 / A$ is unchanged.

- Instead of r, we discuss the relationship between the connectivity and d for simplify.
- **Using** $r = \sqrt{Ad/(\pi n)}$, we can get the corresponding communication radius.

Connectivity versus average number of neighbors

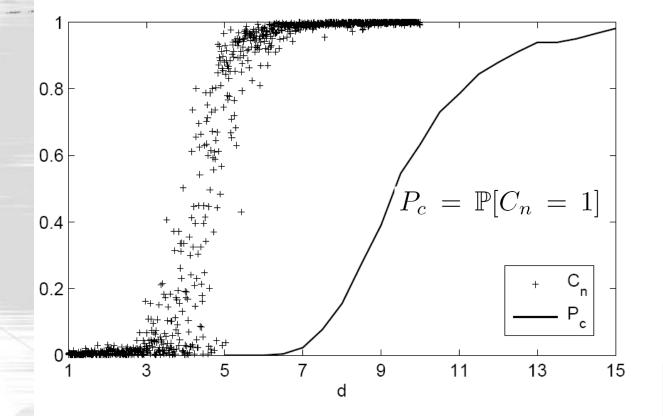


Fig. 2. relations between C_n , P_c and d.

Outlines

Introduction

Asymptotic sink connectivity

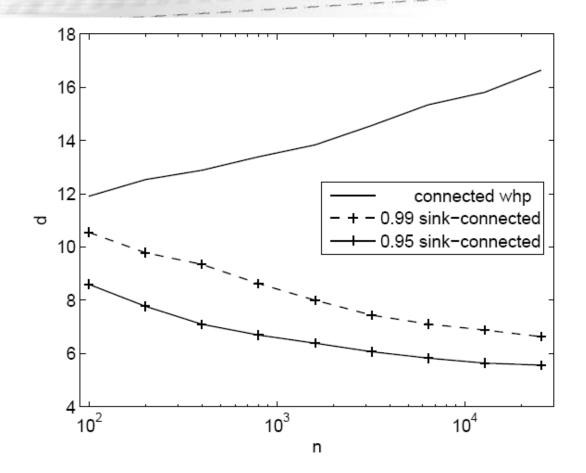
- Critical communication radius for sink connectivity
- Effective communication radiuses for different link models

α sink connected

□ A network is α sink connected if $C_n \ge \alpha$ with high probability.

The minimal radius that makes the network α sink connected is the critical communication radius for α sink connected

Required average neighbor number versus *n*



Critical radius $r = \sqrt{Ad/(\pi n)}$

Fig. 3. Relations between d and n for different levels of connectivity. 8/13/2009

Observations

If we tolerate a small percent of nodes being isolated, the critical communication radius will be considerable reduced.

This could resulting in reducing communication energy consumption significantly since energy ∞ {communication radius^{q=2-4}}

Outlines

Introduction

Asymptotic sink connectivity

- Critical communication radius for sink connectivity
- Effective communication radiuses for different link models

Link models

Simple Boolean

 (x_i, x_j) can communication with each other if and only if $||x_i - x_j|| < r$, where r is a constant.

Random connection

 x_i can send a message to x_j with the probability $g(||x_i - x_j||)$

 $r(\phi, \theta_i)$

Anisotropic

 x_i can send a message to x_i if and only if

 $\|x_i - x_j\| < r(\phi, \theta_i)$, see the figure.

Random radius

 (x_i, x_j) can communication with each other if and only if $||x_i - x_j|| < r_i$, where r_i is a random variable.

Effective Communication Radius

 $r_e = E(\sqrt{e(g)/\pi}) = E(\sqrt{\int_{x \in \mathbb{R}^2} g(x) dx/\pi}).$

as the effective communication radius where (x_i, x_j) is connected with probability $g(x_i - x_j)$, e(g) is the effective communication area Numerous of simulation results show that

- If the effective communication radius > R, the sink connectivity of three other link models (or the combination of three other link models) is better than that of the simple Boolean model
- Note: Here the sink connectivity is the fraction of nodes that can receive the broadcasting ^{8/13}messages from the sink.

Average connectivity for different link models

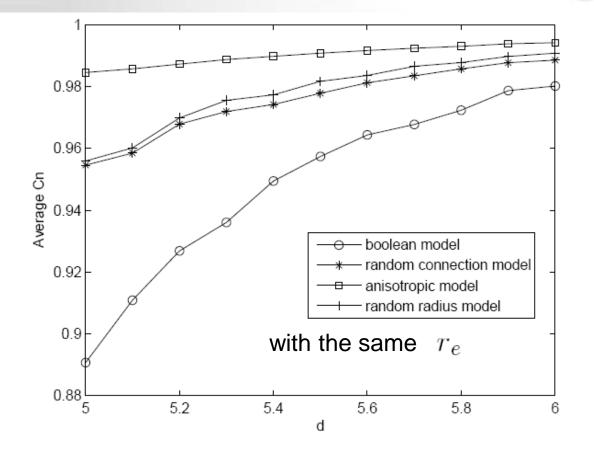


Fig. 4. relations between C_n and d in four different models.

8,

Summary and conclusions

- Sink connectivity is proposed for wireless sensor networks
- If we tolerate a small fraction of nodes being isolated, we can reduce the communication radius, and thus the communication power consumption significantly.
- If the density of the nodes remain unchanged, the critical communication radius for sink connectivity would decrease opposite to the critical communication radius for full connectivity.
- Effective communication radius is introduced to describe the sink connectivity in more complicated link models.

Tsinghua University

Thank you